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Santa Catarina, Brazil

Received 6 November 1996

Abstract. We study the dynamical critical behaviour of a double chain of spins where we
take into account short-range four-spin interactions. This system is exactly soluble only in
the thermodynamical equilibrium. We use the initial response rate of the order parameter to
establish a lower bound to the dynamical critical exponentz. We show that, for the one- and
two-spin-flip Glauber transition rates, the exponentz depends on the microscopic details of the
Hamiltonian, that is, the dynamical critical exponent appears non-universal. This type of non-
universal behaviour has already been seen in the one-dimensional Ising model with non-uniform
exchange interactions.

In this work we study the dynamical critical behaviour of a double chain of spins. Our main
interest here is to obtain a lower bound to the dynamical critical exponent of this model.
In figure 1, we exhibit the model we consider, along with the exchange interactions. The
Hamiltonian of this model can be written as

H = −J1

N∑
i=1

(σi,1σi,2σi+1,1σi+1,2) − J2

N∑
i=1

(σi,1σi+1,1 + σi,2σi+1,2)

−J3

2

N∑
i=1

(σi,1σi,2 + σi+1,1σi+1,2) (1)

where J1 is the short-range four-spin exchange interaction,J2 is the exchange coupling
between nearest-neighbour spins in each chain, andJ3 is the interchain exchange coupling
between nearest-neighbour spins. We assume thatσi,α = ±1, whereα = 1, 2 labels the
upper and the lower chain, respectively. This Hamiltonian naturally appears when we
integrate the elastic degrees of freedom of a compressible Ising double chain in the pressure
ensemble [1]. In equilibrium, the model given by the Hamiltonian, equation (1), is exactly
soluble. The canonical partition function of this model can be easily determined through
the transfer matrix method.

To study the dynamical properties of this model, we follow the method outlined by
Glauber [2], in which the variables of spins are stochastic functions of time. The system,
in contact with a thermal bath at temperatureT , evolves in time from a non-equilibrium
state to equilibrium through the master equation

d

dt
P (σ1,1, . . . , σi,1, σi,2, . . . , σN,2, t) = −

∑
i

wi(σi,1, σi,2)P (σ1,1, . . . , σi,1, σi,2, . . . , σN,2, t)

+
∑

i

wi(−σi,1, −σi,2)P (σ1,1, . . . ,−σi,1, −σi,2, . . . , σN,2, t) (2)
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Figure 1. A schematic representation of the double chain of spins.J1 is the short-range four-
spin interaction,J2 is the longitudinal exchange coupling andJ3 is the exchange coupling for
each rod of the double chain.

whereP(σ1,1, . . . , σi,1, σi,2, . . . , σN,2, t) is the probability of finding the system in the state
(σ1,1, . . . , σi,1, σi,2, . . . , σN,2) at timet , andwi(σi,1, σi,2) gives the probability, per unit time,
for the transition from the state(σi,1, σi,2) to (−σi,1, −σi,2). We use the detailed balance
condition (DBC) to find an explicit expression forwi(σi,1, σi,2). Then we can write

wi(σi,1, σi,2)

wi(−σi,1, −σi,2)
= Peq(−σi,1, −σi,2)

Peq(σi,1, σi,2)
(3)

where

Peq ∝ e−βH (4)

is the equilibrium probability andβ = 1/kBT (kB is the Boltzmann constant). After some
algebraic manipulations we find the following expression for the transition probability:

wi(σi,1, σi,2) = 1
2α[1 − 1

2γ2σi,1(σi+1,1 + σi−1,1) − 1
2γ2σi,2(σi+1,2 + σi−1,2)

+ 1
4γ 2

2 σi,1σi,2(σi+1,1σi+1,2 + σi+1,1σi−1,2 + σi−1,1σi+1,2 + σi−1,1σi−1,2)] (5)

whereγ2 = tanh 2K2 = tanh(2J2/KBT ) andα is a constant. It is important to note that our
transition probability is slightly different from the one proposed by Glauber [2], because
here we flip two spins of a given rod at the same time.

Unfortunately, with the expression ofwi(σi,1, σi,2), it is not possible to find exact
expressions for the evolution of the magnetization and of the high-order correlation functions
from the master equation. This occurs because on the right-hand side of the master equation
there appear high-order correlation functions. The dynamical scaling hypothesis [3] asserts
that, near the critical point,

τq = ξzF (qξ) (6)

whereτq is the relaxation time of the order parameter,q is the critical wave vector,ξ is the
static correlation length, andz is the so-called dynamical critical exponent. The function
F(qξ) is an analitical function of its argument. Based on this scaling relation, and employing
the method of initial response rate of the order parameter [4], we can derive a rigorous lower
bound to the dynamical critical exponentz. After a straightforward calculation we obtain
the following lower bound for the relaxation time of the order parameter:

τq > kBT χq

(4/N)
∑N

j=1〈(1 + σj,1σj,2)wj (σj,1, σj,2)〉eq

(7)

where

χq ≡ 1

N

∑
j,k

〈(σj,1 + σj,2)(σk,1 + σk,2)〉eiq·(rk−rj ) (8)
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is the static magnetic susceptibility corresponding to the wave vectorq.
Therefore, it is possible to find a lower bound to the dynamical critical exponent, defined

previously through equation (6). In order to derive this lower bound, it is only necessary
to evaluate the right-hand side of the inequality (7) at the thermodynamical equilibrium.

Using expression (5) for the transition probability, the average value in the denominator
of inequality (7) can be written as

〈(1 + σi,1σi,2)wi(σi,1, σi,2)〉eq = 1
2α{1 + 〈σi,1σi,2〉

− 1
2γ2[〈σi,1σi−1,1〉 + 〈σi,1σi+1,1〉 + 〈σi,2σi−1,2〉 + 〈σi,2σi+1,2〉 + 〈σi,2σi−1,1〉

+〈σi,2σi+1,1〉 + 〈σi,1σi−1,2〉 + 〈σi,1σi+1,2〉]
+ 1

4γ 2
2 [〈σi+1,1σi+1,2〉 + 〈σi+1,1σi−1,2〉 + 〈σi−1,1σi+1,2〉 + 〈σi−1,1σi−1,2〉

+〈σi,1σi,2σi+1,1σi+1,2〉 + 〈σi,1σi,2σi+1,1σi−1,2〉 + 〈σi,1σi,2σi−1,1σi+1,2〉
+〈σi,1σi,2σi−1,1σi−1,2〉]}eq. (9)

The correlation functions in equation (9) are easily evaluated, as well as the magnetic
susceptibility and the correlation length, through the transfer matrix method [1]. The critical
wave vector for the double chain of ferromagnetic spins correspond to the uniform situation,
that is to sayq = 0, and the magnetic susceptibilityχq=0 diverges atT → 0. Therefore,
we can find the asymptotic average values in equation (9) in the limitT → 0. After some
algebraic manipulations we can show that

〈(1 + σi,1σi,2)wi(σi,1, σi,2)〉eq ≈ 2αe−4K2. (10)

When the values of the correlation length and of the magnetic susceptibility [1] are
used, along with equations (6) and (7), the inequality (7) givesz > 2, as the lower bound to
the dynamical critical exponent associated with a transition rate that takes into account the
simultaneous flipping of two spins belonging to the same rod. As to be expected, this result
is equal to the one obtained for the one-dimensional Ising model with uniform exchange
couplings between nearest neighbours. This is reasonable because the flipping of a single
vertical rod of spins of the double chain is equivalent to flipping a single spin in the linear
chain.

On the other hand, we obtain a different lower bound if we choose another type
of transition rate for the double chain. For instance, the simultaneous flipping of two
neighbouring spins on the same chain leads to the following transition probability:

wi(σi,1, σi+1,1) = 1
2α[1 − 1

2γ1(σi−1,1σi−1,2σi,1σi,2 + σi+1,1σi+1,2σi+2,1σi+2,2)]

×[1 − 1
2γ2(σi−1,1σi,1 + σi+1,1σi+2,1)][1 − 1

2γ3(σi,1σi,2 + σi+1,1σi+1,2)] (11)

whereγi = tanh 2Ki , with i = 1, 2, 3 andKi = Ji/KBT . The use of initial response rate
of order parameter provides an inequality similar to that of equation (7). However, the
asymptotic average values in the low temperature limit give

〈(1 + σj,1σj,2)wj (σj,1, σj+1,1)〉eq ≈ 16αe−4K1−4K2−4K3. (12)

Then, we obtain the following inequality to the dynamical critical exponentz:

z > 2 + J1

J2
+ J3

J2
.

Surprisingly, this result shows a dependence on the microscopic details of the
Hamiltonian. Only if J1 and J3 vanish, do we obtain the expected valuez > 2. This
type of non-universal behaviour of the dynamical critical exponent has already been seen
for the one-dimensional Ising model with non-uniform exchange couplings [5–7]. If, instead
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of flipping two spins at the same time, we could flip only a single spin. The result we obtain,
after a straigthforward calculation, is given by

z > 2 + J1

J2
+ J3

2J2

where the dependence on the details of the Hamiltonian is again exhibited. Haake and Thol
[8] also have shown that for one-dimensional Ising models the critical dynamical exponent
z can depend on the details of the spin-flip transition rate, but Southern and Achiam [9]
have studied the reasons for the violation of the dynamical scaling in these one-dimensional
models. These one-dimensional Ising systems have at the critical point a zero temperature.
For an inhomogeneous Ising chain there appears metastable states that are frozen against
single spin-flips at very low temperatures. In fact, these metastable states contribute with
infinite relaxation times, and are due to short-range interactions. However, if we include
these non-critical contributions the dynamical critical exponent is overestimated. Southern
and Achiam [9] have shown that the standard dynamics is recovered for the one-dimensional
Ising model with alternating bonds if the two-spin-flip dynamics is considered. In the case
of our double chain of Ising spins the metastable states are frozen even for two-spin flips.
This is the reason for the large value found for the lower bound of the dynamical critical
exponent. As pointed out by Southern and Achiam these frozen non-critical metastable
states can be excited only by considering multiple-spin flips. Perhaps, for the system we
are considering, it would be necessary to consider more than four-spin flips simultaneously
in order to recover the standard dynamics.

To summarize, the method of initial response rate of the order parameter was applied to
a double chain of spins in order to derive a rigorous lower bound to its dynamical critical
exponent. We have shown that if we flip only a single spin, or two neighbouring spins
inside the same chain, the dynamical critical exponentz appears to be non-universal. The
dependence ofz on the parameters of the Hamiltonian also appears in one-dimensional Ising
models with random exchange couplings. On the other hand, when we flip two spins on
the same vertical rod of the double chain, the exponentz appears universal. This can be
understood as the two spins on each rod were collapsed onto a single spin, and the double
chain changed to a linear chain. A universal behaviour for the dynamical critical exponent
of the double chain of spins, with short-range four-spin interactions, can be obtained if
multiple-spin flips are considered as pointed out by Southern and Achiam.
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